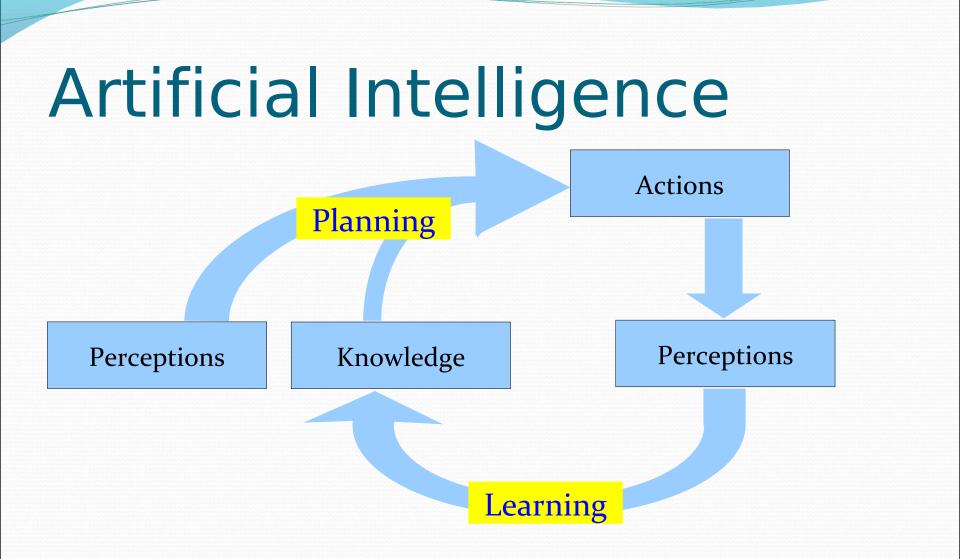
COMPUTATIONAL INTELLIGENCE


September 2012 – November 2012 Siegfried Nijssen

Leiden Institute of Advanced Computer Science e-mail: snijssen@liacs.nl Katholieke Universiteit Leuven e-mail: siegfried.nijssen@cs.kuleuven.be

Artificial Intelligence

- Aims to develop intelligent agents that perceive their environment and take actions that maximize their chances of success
- Requires solving several challenges:
 - Knowledge representation: how does an agent represent its knowledge?
 - Reasoning, planning: how does an agent deduce an action based on its perceptions and its knowledge?
 - Learning:

how does an agent update its knowledge based on its perceptions?

Computational Intelligence

- Computational intelligence traditionally studies a subset of three AI techniques:
 - Knowledge representation: fuzzy logic & fuzzy set theory
 - Reasoning, planning: Evolutionary (genetic) algorithms
 - Learning: Neural networks

Knowledge representation: Fuzzy logic

Goal: represent "fuzzy" knowledge of an agent

Traditional logic can be used to represent crisp rules:

if *A* is true then do *B*

Boolean in \rightarrow Boolean out

• Fuzzy logic represents fuzzy rules:

if A is true to a high degree / A is likely then try to make B true to a high degree / make B likely

Number in \rightarrow Number out

Fuzzy logic is less sensitive to errors / noise

Knowledge representation: Fuzzy logic

• Used to build control systems

if A is warm to a high degree then B should be turned down to a high degree

• Used to calculate the overall quality (fitness) of a (hypothetical) situation

if A is likely then outcome is likely good if B is likely then outcome is likely good if C is likely and B is not likely then outcome is likely good

how good would the situation be in which *A* and *C* are true, and *B* is false?

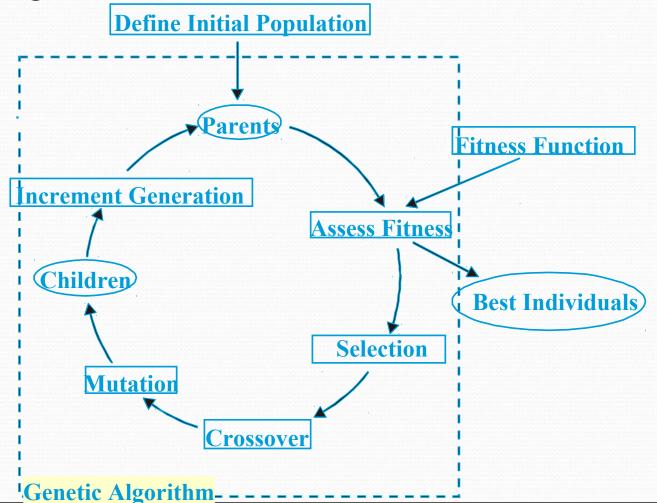
Research challenges: how to interpret fuzzy rules? What are sensible strategies for calculating an output, given inputs?

Planning / optimization: Evolutionary Algorithms

• Goal of an evolutionary algorithm:

to find a plan that optimizes a given fitness function

 the fitness could be defined by means of fuzzy logic, but does not have to be


• Example:

the traveling salesman problem

- Given a number of cities, distances between the cities
- Find an order in which to visit the cities such that the total distance traveled is minimized

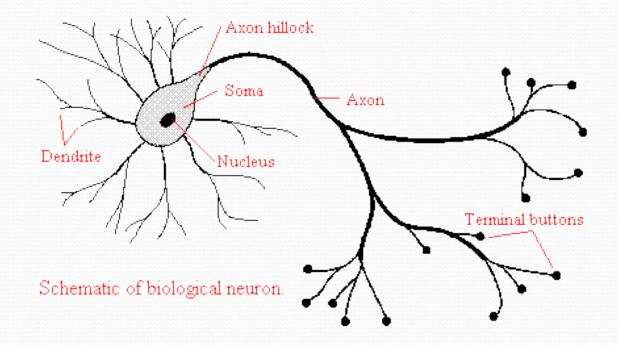
Evolutionary Algorithms

 Method: evolve populations of solutions by mimicking evolution in nature

Nature-inspired optimization

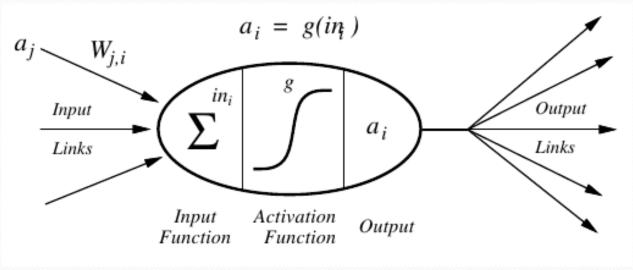
Evolutionary algorithms

Particle swarm optimization


Artificial ants

All are <u>robust optimization algorithms:</u> if the fitness function changes, solutions usually adapt relatively easily

Research challenge: which algorithm finds a good solution as quickly as possible?


Learning: Neural Networks

Inspired by biological nervous systems

Learning: Neural Networks

Artificial neuron

(Neuron/Unit)

Also a neural network represents knowledge, and is often used used to transform input to output

Learning: Neural Networks

- Different types of neural networks:
 - feed-forward neural networks
 - self-organizing maps
 - recurrent networks
 - radial basis function networks
 - fuzzy-neural networks

Research challenge: how to learn a neural network?

Computational Intelligence

- Knowledge representation: fuzzy logic & fuzzy set theory
- Reasoning, planning: Evolutionary (genetic) algorithms
- You haven't followed a basic course on logic

Learning:
 Neural networks
 Also in course on data mining
 Basis already discussed in course artificial intelligence

- Advanced topics require strong mathematics

 Knowledge representation & planning: traditional logic, SAT solvers, constraint programming COMPUTATIONAL INTELLIGENCE

- Knowledge representation: fuzzy logic & fuzzy set theory
- Reasoning, planning: Evolutionary (genetic) algorithms

Central Theme

- Artificial intelligence inspired methods for
 - Knowledge representation:
 - Logic
 - Fuzzy logic
 - Optimization & planning:
 - SAT solving
 - Constraint programming
 - Local search
 - Evolutionary algorithms

Template of a Constraint Optimization Problem

- Given:
- ... • Find:
 - ...
- Such that:
 - ... is minimal/maximal
 - ... is satisfied

Example 1: Traveling Salesmen

Given:

- N cities
- D[i,j] distances between cities

• Find:

 an assignment p[i] for i=1..N with p[i] in 1..N, indicating that at step i city p[i] is visited

Such that:

D[p[1],p[2]]+D[p[2],p[3]]+...+D[p[n-1],p[n]]+D[p[n],p[1]]
 is minimal

Optimization

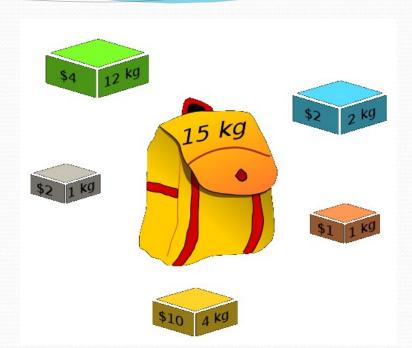
Example 2: Binpacking

- Given:
 - *N* items with sizes $a_1, ..., a_N$

Each bin: 4.0

• A bin size *V*

• Find:


 an assignment p[i] for i=1..N to positive integers, indicating that item i is put in bin p[i]

Such that:

- max_i *p*[*i*] is **minimal** (number of bins is small)
- $\sum_{p[i]=j} a_i \leq V$ for all bins *j* (no more than weight *V* in each bin)

Example 3: Knapsack

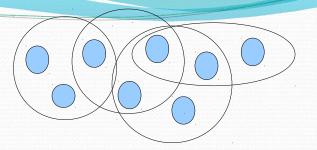
- Given:
 - N items with sizes a₁,...,a_N,
 prices p₁,...,p_N
 - A maximum weight W
- Find:
 - a subset of items I
- Such that:
 - $\sum p_i$ is **maximal** (very valuable knapsack)
 - $\sum_{i \in I}^{i \in I} a_i \leq W$ (knapsack with low weight)

Example 3b: Unbounded Knapsack • Given:

N possible items with sizes a₁,...,a_N, prices p₁,...,p_N

• A weight W

• Find:


• an integer *w*[*i*] for each item *i*

Such that:

- $\sum_{i \in \overline{N}}^{N} w[i] p_i$ is maximal (very valuable knapsack)
- $\sum_{i=1}^{\infty} w[i]a_i \leq W$ (knapsack with low weight)

Example 4: Set Cover

- Given:
 - N sets, each a subset of the universe U={1,2,...,m}
- Find:
 - A subset *S* of the *N* given sets, i.e. each set in *S* equals one of the given sets, but not all given sets need to be selected.

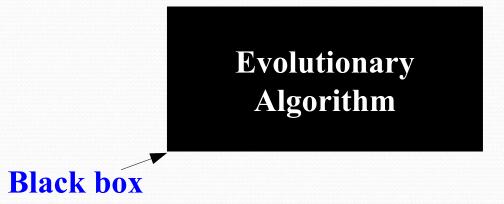
Such that:

• |*S*| is **minimal** (small subset)

•
$$\bigcup_{S \in \mathbf{S}} S = U$$
 (each element is covered)

How to solve these problems?

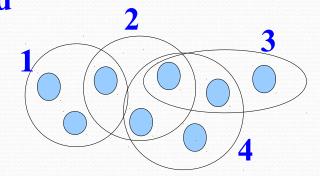
Many such problems are hard


- "NP hard" \rightarrow no polynomial algorithm is known
- Two solutions:
 - Exact: require exponential time in the worst case
 - Inexact: polynomial, but may not find the best solutions
- Both types of solutions have been studied in artificial intelligence, algorithms, and operations research

 Distinguishing feature of AI approaches: they aim to be "intelligent" by solving a problem (semi-)automatically

Idea: solve a problem in two stages:

- 1. Describe the problem in a computer language.
- 2. Run a general algorithm (a "solver" or an "inference engine") on this description to solve the problem.
- i.e., one does **not** write an algorithm.


- Example search: evolutionary algorithm
 - Step 1:
 - Specify what the individuals in a population look like
 - Specify the quality of an individual (fitness)
 - Step 2: (Ideal situation)
 - Run an existing evolutionary algorithm without modification

- Example problem: set cover
- Representation of an individual in a bitstring:

- Fitness: (assuming small=very fit)
 - Number of sets selected?
 - Number of sets selected +
 (number of uncovered elements) x w

Very large weight

• What about optimal solutions?

• Alternative general systems that take a declarative input specification and find optimal solutions:

Constraint programming

SAT solvers

• ILP solver

• Which programming language to use?

• C++ ?

• Java ?

• Prolog ?

Why Python?

- Scripting language with a high level of abstraction
 - Implements features also seen in functional and logic programming
- Well-supported language with many libraries available
- Quickly gaining popularity in the scientific community (Coursera)

Why Python?

	2011	2012		2011	2012
R	45.1%	52.5%	Unix shell	10.4%	14.7%
Python	24.6%	36.1%	C/C++	12.8%	14.3%
SQL	32.3%	32.1%	MATLAB	14.6%	13.1%
Java	24.4%	24.1%	Perl	7.9%	9.0%
SAS	21.2%	19.7%	Hadoop-based	6.1%	6.7%

www.kdnuggets.com

Computational Intelligence

Basic course in Python

 Knowledge representation & planning: traditional logic, SAT solvers, constraint programming

 Knowledge representation: fuzzy logic & fuzzy set theory

 Reasoning, planning: Evolutionary (genetic) algorithms

Course overview

12 lectures of 2 hours

• 8 practicum sessions → working on exercises

week	Datum	Maand	lag				Dinsdag							Woens	Donderdag							Vrijdag													
nr	Ma	1 2	3 4	5 6	7	8	1	2 3	4	5	6	78	3	12	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3 4	1	56	7	78
36	3 sep			Openin	ng ac.	. jaar		CI								(CI	pr	CI				F	HCI									S	ud	ver
37	10 sep		HCI	DaMi				CI								(CI	pr	CI				F	HCI										Т	
38	17 sep		HCI	DaMi			П	CI								(CI	pr	CI					HCI	Г		Г		Г					Т	
39	24 sep		HCI	DaMi			<u> </u>																ŀ	HCI											
40	1 okt		HCI	DaMi											Le	iden	s on	tzet						HCI	Γ		Г		\square		C		pr C	П	
41	8 okt		HCI	DaMi												(CI	pr	CI				F	HCI											
42	15 okt		HCI	DaMi												(CI	pr	CI					HCI	1		\square							T	
43	22 okt		HCI	DaMi												(CI	pr	CI				F	HCI	1		\square							T	
44	29 okt		HCI	DaMi	1		pr F	in	Fin						F	in		С	I				F	HCI	Г				Г		Fir	n I		\top	
45	5 nov		HCI	DaMi		t Fin	pr F	in	Fin						F	in		pr	CI					HCI			\top		\square		Fir	۱		十	
46	12 nov		HCI	DaMi		t Fin	pr F	in	Fin						F	in		С	I				F	HCI							Fir	۱			
47	19 nov		HCI	DaMi		t Fin	pr F	in	Fin						F	in		pr	CI				F	HCI	Г		В	ach			Fir	۱ I		\top	
48	26 nov		HCI	DaMi		t Fin	pr F	in	Fin						F	in		С	I				F	HCI			В	ach			Fir	١		T	
49	3 dec		HCI	DaMi		t Fin	pr F	in	Fin						F	in							F	HCI	1		В	ach			Fir	1		\top	
50	10 dec		HCI	DaMi		t Fin	pr F	in	Fin						F	in															Fir	1		T	
51	17 dec																	TF	in															+	

 Final mark obtained 70% from a written exam and 30% from practicum assignments